
Using Abstraction to Coordinate Multiple Robotic Spacecraft

Bradley J. Clement, Anthony C. Barrett,
Gregg R. Rabideau

Jet Propulsion Laboratory
4800 Oak Grove Drive, M/S 126-347

Pasadena, CA 91109-8099
bclement, barrett, rabideau @aig.jpl.nasa.gov

Edmund H. Durfee
University of Michigan

1101 Beal Avenue
Ann Arbor, MI 48109-2110

durfee@umich.edu

Abstract

The trend toward multiple-spacecraft missions requires au-
tonomous teams of spacecraft to coordinate their activities
when sharing limited resources. This paper describes how
an iterative repair planner/scheduler can reason about the
activities of multiple spacecraft at abstract levels in order
to greatly improve the scheduling of their use of shared
resources. By finding consistent schedules at abstract levels,
refinement choices can be preserved for use in robust plan
execution systems. We present an algorithm for summariz-
ing the metric resource requirements of an abstract activity
based on the resource usages of its potential refinements.
We find that reasoning about this summary information and
that of state constraints can offer exponential improvements
in the time to find consistent schedules with an iterative
repair planner. We analytically describe the conditions
under which these improvements are made and show that
sometimes the extra overhead involved does not warrant
their use. We apply these techniques within the ASPEN
planner/scheduler to a domain where a team of rovers must
coordinate their schedules to avoid conflicts over shared re-
sources. Experiments using the ASPEN planner/scheduler
in a Mars multi-rover domain support our analyses and
compare techniques for controlling decomposition.

1 Introduction
Autonomous spacecraft have recently used onboard plan-
ning and execution in order to improve the efficiency of
exploration by reducing explicit remote control. However,
a trend toward multiple-spacecraft missions requires au-
tonomous teams of spacecraft to collectively plan and ex-
ecute for goals that arise. In order to plan for coordinated
execution, the spacecraft need to reason about the popula-
tion’s concurrent execution to detect and resolve conflicts
among the individual spacecrafts’ plans. For many applica-
tions, reasoning about a planning problem at multiple levels
of abstraction enhances planning and scheduling efficiency.

In an effort to reason about actions at abstract levels, Hi-
erarchical Task Network (HTN) planners [4] represent ab-

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration. It was also
supported in part by DARPA (F30602-98-2-0142).

stract plan operators that decompose into choices of action
sequences that may also be abstract. These planners exploit
domain knowledge to reduce the space of plans they gen-
erate. A domain expert can intuitively encode hierarchies
of plan operators to guide the planner in building an order-
ing of actions that achieves abstract tasks, goals, and sub-
goals. Instead of building a plan from the beginning for-
ward (or end backward), the planner incrementally refines
abstract operators to eventually converge on specific actions
that achieve the higher level goals. By structuring the re-
finement of goals, the planner indirectly prunes the space of
inconsistent or poor plans by avoiding sequences of opera-
tors that do not effectively achieve higher level goals. While
the planner is restricted to produce only those plans dictated
by the structure of the hierarchy, the domain expert can still
guarantee completeness by carefully structuring the abstract
plan operators. The domain expert has this same responsi-
bility when crafting operators for non-hierarchical planners.

Previous research [10; 13; 9] has shown that, under cer-
tain restrictions, hierarchical refinement search can reduce
the search space by an exponential factor. Recent research
has shown that the performance of hierarchical planners can
be greatly improved without these restrictions by reason-
ing during refinement about the conditions embodied by ab-
stract plan operators [2; 3]. These summarized conditions
represent the internal and external requirements and effects
of the abstract operator and those of the children in its de-
composition. Using this information, a planner can resolve
conflicts at abstract levels and sometimes can find abstract
solutions or determine that particular decomposition choices
are inconsistent. The domain expert can derive these sum-
mary conditions for each abstract operator in the domain of-
fline before planning problems are encountered. Reasoning
about this summary information can exponentially reduce
the cost of finding a first solution and optimal solutions [3].

Iterative repair planners commonly use scheduling and
constraint satisfaction techniques for handling large num-
bers of activities and metric resources. We extend summary
information to additionally include a representation for sum-
marizing the metric resource usages of an abstract activity’s
decompositions. We demonstrate the benefits of abstrac-
tion in ASPEN [1] (an iterative repair planner/scheduler)
by using algorithms and techniques for effectively reason-
ing about this summary information.

While planning efficiency is a major focus of this ap-



proach, another is the support of flexible plan execution sys-
tems such as PRS [6], UMPRS [11], RAPS [5], JAM [7],
etc., that similarly exploit hierarchical plan spaces. Rather
than refine abstract plan operators into a detailed end-to-end
plan, however, these systems interleave refinement with ex-
ecution. By postponing refinement until absolutely neces-
sary, such systems leave themselves flexibility to choose re-
finements that best match current circumstances. However,
this means that refinement decisions at abstract levels are
made and acted upon before all of the detailed refinements
need be made. If such refinements at abstract levels intro-
duce unresolvable conflicts at detailed levels, the system ul-
timately gets stuck part way through a plan that cannot be
completed. While backtracking is possible for HTN plan-
ning (since no actions are taken until plans are completely
formed), it might not be possible when some (irreversible)
plan steps have already been taken. It is therefore criti-
cal that the specifications of abstract plan operators be rich
enough to summarize all of the relevant refinements to antic-
ipate and avoid such conflicts. Using summary information,
a planner can resolve conflicts at abstract levels while pre-
serving refinement choices underneath that can be used in
robust execution systems to handle unexpected or unknown
events and to provide some ability to recover from failure.

This research makes the following contributions:
An algorithm summarizing metric resource usages for
abstract activities;
Complexity analyses showing that schedule operations
are exponentially cheaper at higher levels of abstrac-
tion when summarizing activities results in fewer re-
source, state, and temporal constraints;
Experiments in a multi-rover domain that show that
summary information enables a planner to find solu-
tions (consistent schedules) more quickly under the
conditions reported in the complexity analyses and that
reveal conditions under which summary information
can introduce unnecessary overhead;
An empirical comparison of search techniques for
directing the refinement of abstract activities based
on conflicts over summarized constraints, showing
how summary information can further improve perfor-
mance in finding solutions.

2 Representations
To illustrate our approach, we will focus on managing a col-
lection of rovers as they explore the environment around a
lander on Mars. This exploration takes the form of visiting
different locations and making observations. Each traversal
between locations follows established paths to minimize ef-
fort and risk. These paths combine to form a network like
the one mapped out in Figure 1, where vertices denote dis-
tinguished locations, and edges denote allowed paths. While
some paths are over hard ground, others are over loose sand
where traversal is harder since a rover can slip.

2.1 Resources and Tasks
More formally, we represent each rover’s status in terms of
state and resource variables. The values in state variables
record the status of key rover subsystems. For instance, a
rover’s position state variable can take on the label of any

B

A D

C

F

E

Figure 1: Example map of established paths between points
in a rover domain, where thinner edges are harder to tra-
verse, and labeled points have associated observation goals

vertex in the location network. Given this representation of
state information, tasks have preconditions/effects that we
represent as equality constraints/assignments. In our rover
example traveling on the arc from point to point is
done with a go(A,B) task. This task has the precondition

= and the effect = .
In addition to interacting with state variables, tasks use

resources. While some resources are only used during a
task, using others persists after a task finishes. The first
type of resource is nondepletable, with examples like so-
lar power which immediately becomes available after some
task stops using it. On the other hand, battery energy is a
depletable resource because its consumption persists until a
later task recharges the battery. We model a task’s resource
consumption by subtracting the usage amount from the re-
source variable when the task starts and for nondepletable
resources adding it back upon completion. While this ap-
proach is simplistic, it can conservatively approximate any
resource consumption profile by breaking a task into smaller
subtasks.

Primitive tasks affect state and resource variables, and an
abstract task is a non-leaf node in an AND/OR tree of tasks.1

An AND task is executed by executing all of its subtasks ac-
cording to a some set of specified temporal constraints. An
OR task is executed by executing one of its subtasks. Fig-
ure 2 gives an example of such an abstract task. Imagine a
rover that wants to make an early morning trip from point

to point on our example map. During this trip the sun
slowly rises above the horizon giving the rover the ability
to progressively use soak rays tasks to provide more solar
power to motors in the wheels. In addition to collecting pho-
tons, the morning traverse moves the rover, and the resultant
go tasks require path dependent amounts of power. While a
rover traveling from point to point can take any num-
ber of paths, the shortest three involve following one, two,
or three steps. As the take X path branches suggest, there
can be a number of temporal and other constraints between
tasks in a branch.

2.2 Summary Information
An abstract task’s state variable summary information in-
cludes elements for pre-, in-, and postconditions. Summary
preconditions are conditions that must be met by the initial
state or previous external tasks in order for a task to decom-
pose and execute successfully, and a task’s summary post-

1It is trivial to extend the algorithms in this paper to handle state
and resource constraints specified for abstract tasks.



Figure 2: AND/OR tree defining abstract tasks and how they decompose for a morning drive from point A to point B along
one of the three shortest paths in our example map, where 1, 2, and 3 denote unlabeled waypoints

conditions are the effects of its decomposition’s execution
that are not undone internally. We use summary incondi-
tions for those conditions that are required or asserted in
the task’s decomposition during the interval of execution.
All summary conditions are used to reason about how state
variables are affected while performing an abstract task, and
they have two orthogonal types of modalities:

or indicates that a condition holds in all or
some decompositions of the abstract task respectively
and

, , , or indicates when a
condition holds in the task’s execution interval.

For instance, the task in our example
has a = summary precondition and
a = postcondition because all de-
compositions move the rover from to . Since
the task decomposes into one of several
paths, it has summary inconditions of the form ,

= , where is 1, 2 or 3. State sum-
mary conditions are formalized in [2].

Extending summary information to include metric re-
sources involves defining a new representation and algo-
rithm for summarization. A summarized resource usage
consists of ranges of potential resource usage amounts dur-
ing and after performing an abstract task, and we represent
this summary information using the structure

where the resource’s local usage occurs within the task’s
execution, and the persistent usage represents the usage that
lasts after the task terminates for depletable resources.

The usage ranges capture the multiple possible usage pro-
files of an task with multiple decomposition choices and
timing choices among loosely constrained subtasks. For ex-
ample, the high path task has a summary
power use over a 40 minute interval. In this case the ranges
are single points due to no uncertainty – the task simply uses
4 watts for 15 minutes followed by 6 watts for 25 minutes.
The provides a slightly more complex exam-
ple due to its decompositional uncertainty. This task has a

summary power use over a 50 minute
interval. In both cases the is because
power is a nondepletable resource.

While a summary resource usage structure has only one
range for persistent usage of a resource, it has ranges for

both the minimum and maximum local usage because re-
sources can have minimum as well as maximum usage lim-
its, and we want to detect whether a conflict occurs from
violating either of these limits. As an example of reasoning
with resource usage summaries, suppose that only 3 watts
of power were available during a task. Given
the , we know that there is an un-
resolvable problem without decomposing further. Raising
the available power to 4 watts makes the task executable
depending on how it gets decomposed and scheduled, and
raising to 6 or more watts makes the task executable for all
possible decompositions.

3 Resource Summarization Algorithm
The state summarization algorithm [2] recursively propa-
gates summary conditions upwards from an AND/OR tree’s
leaves, and the algorithm for resource summarization takes
the same approach. Starting at the leaves, we find prim-
itive tasks that use constant amounts of a resource. The
resource summary of a task using units of a resource is

, , , , , or , , , , , over the task’s dura-
tion for nondepletable or depletable resources respectively.

Moving up the AND/OR tree we either come to an AND
or an OR branch. For an OR branch the combined summary
usage comes from the OR computation

where and extract the lower bound and up-
per bound of a range respectively. The denote
the branch’s children with their durations extended to the
length of the longest child. This duration extension alters
a child’s resource summary information because the child’s
usage profile has a 0 resource usage during the extension.
For instance, when we determine the resource usage for

we combine two 40 minute tasks with a 50
minute task. The resulting summary information is for a
50 minute abstract task whose profile might have a zero
watt power usage for 10 minutes. This extension is why

has a for a instead of



. Planners that reason about variable durations could
use for a duration ranging from 40 to 50.

Computing an AND branch’s summary information is a
bit more complicated due to timing choices among loosely
constrained subtasks. Our take path examples illustrate
the simplest subcase, where subtasks are tightly constrained
to execute serially. Here profiles are appended together, and
the resulting summary usage information comes form the
SERIAL-AND computation

where and are the respective lower and up-
per bounds on the cumulative persistent usages of children
that execute before . These computations have the same
form as the computations for the final .

The case where all subtasks execute in parallel and have
identical durations is slightly simpler. Here the usage pro-
files add together, and the branch’s resultant summary usage
comes from the PARALLEL-AND computation

where and are the respective sums
of upper bounds and
lower bounds for all children except .

To handle AND tasks with loose temporal constraints, we
consider all legal orderings of child task endpoints. For ex-
ample, in our rover’s early morning tasks, there are three
serial solar energy collection subtasks running in parallel
with a subtask to drive to location . Figure 3 shows one
possible ordering of the subtask endpoints, which breaks the

into three pieces, and two of the soak rays chil-
dren in half. Given an ordering, we can (1) use the endpoints
of the children to determine subintervals, (2) compute sum-
mary information for each child task/subinterval combina-
tion, (3) combine the parallel subinterval summaries using
the PARALLEL-AND computation, and then (4) chain the
subintervals together using the SERIAL-AND computation.
Finally, the AND task’s summary is computed by combin-
ing the summaries for all possible orderings using an OR
computation.

Here we describe how step (2) generates different sum-
mary resource usages for the subintervals of a child task.
A child task with summary resource usage , , , , ,
contributes one of two summary resource usages to each in-
tersecting subinterval2:

2For summary resource usages of the last interval intersecting
the child task, we replace with in the .

Figure 3: Possible task ordering for a rover’s morning activ-
ities, with resulting subintervals.

While the first usage has the tighter local
ranges, the second has looser local ranges. Since
the and bounds only apply to the subintervals containing
the subtask’s minimum and maximum usages, the tighter
ranges apply to one of a subtask’s intersecting subintervals.
While the minimum and maximum usages may not occur
in the same subinterval, symmetry arguments let us con-
nect them in our computation. Thus one subinterval has
tighter local ranges and all other intersecting subintervals
get the looser local ranges, and the extra complexity comes
from having to investigate all subtask/subinterval assign-
ment options. For instance, there are three subintervals in-
tersecting in Figure 3, and three different as-
signments of summary resource usages to the subintervals:
placing in one subinterval with in
the other two. These placement options result in a sub-
task with subintervals having possible subinterval as-
signments. So if there are child tasks each with al-
ternate assignments, then there are combinations of po-
tential subtask/subinterval summary resource usage assign-
ments. Thus propagating summary information through an
AND branch is exponential in the number of subtasks with
multiple internal subintervals. However since the number of
subtasks is controlled by the domain modeler and is usually
bounded by a constant, this computation is tractable. In ad-
dition, summary information can often be derived offline for
a domain. The propagation algorithm takes on the form:

For each consistent ordering of endpoints:

– For each consistent subtask/subinterval summary
usage assignment:

Use PARALLEL-AND computations to com-
bine subtask/subinterval summary usages by
subinterval.
Use a SERIAL-AND computation on the
subintervals’ combined summary usages to get
a consistent summary usage.

Use OR computation to combine all consistent sum-
mary usages to get AND task’s summary usage.

4 Using Summary Information
In this section, we describe techniques for using summary
information in local search planners to reason at abstract
levels effectively and discuss the complexity advantages.
Reasoning about abstract plan operators using summary in-
formation can result in exponential planning performance
gains for backtracking hierarchical planners [3]. In itera-
tive repair planning, a technique called aggregation that in-
volves scheduling hierarchies of tasks similarly outperforms



the movement of tasks individually [8]. But, can summary
information be used in an iterative repair planner to improve
performance when aggregation is already used? We demon-
strate that summarized state and resource constraints makes
exponential improvements by collapsing constraints at ab-
stract levels. First, we describe how we use aggregation and
summary information to schedule tasks within an iterative
repair planner. Next, we analyze the complexity of moving
abstract and detailed tasks using aggregation and summary
information. Then we describe how a heuristic iterative re-
pair planner can exploit summary information.

4.1 Aggregation and Summary Information

While HTN planners commonly take a generative least com-
mitment approach to problem solving, research in the OR
community illustrates that a simple local search is surpris-
ingly effective [12]. Heuristic iterative repair planning uses
a local search to generate a plan. It starts with an initial
flawed plan and iteratively chooses a flaw, chooses a repair
method, and changes the plan by applying the method. Un-
like generative planning, the local search never backtracks.
The repair methods can add, change, and remove features
from the current plan. Since taking a random walk through
a large space of plans is inefficient, heuristics guide the
choices by determining the probability distributions for each
choice. We build on this approach to planning by using the
ASPEN planner [1].

Moving tasks is a central scheduling operation in itera-
tive repair planners. A planner can more effectively sched-
ule tasks by moving related groups of tasks to preserve con-
straints among them. Hierarchical task representations are
a common way of representing these groups and their con-
straints. Aggregation involves moving a fully detailed ab-
stract task hierarchy while preserving the temporal ordering
constraints among the subtasks. Moving individual tasks in-
dependent of their siblings and subtasks is shown to be much
less efficient [8]. Valid placements of the task hierarchy in
the schedule are computed from the state and resource usage
profile for the hierarchy. This profile represents one instan-
tiation of the decomposition and temporal ordering of the
abstract task’s hierarchy.

A summarized state or resource usage represents all po-
tential profiles of an abstract task before it is decomposed.
Our approach involves reasoning about summarized con-
straints in order to schedule abstract tasks before they are
decomposed. Scheduling an abstract task is computation-
ally cheaper than scheduling the task’s hierarchy using ag-
gregation when the summarized constraints more compactly
represent the constraint profiles of the hierarchy. This im-
proves the overall performance when the planner/scheduler
resolves conflicts and finds solutions at abstract levels be-
fore fully decomposing tasks. However, because these sum-
marized constraints abstract away information about the
timing of constraints and choices of decomposition, solu-
tions may not be found until tasks are refined to a lower level
of abstraction. In this case, aggregation can be used to move
partially elaborated hierarchies based on their summarized
constraints.

4.2 Complexity Analysis

To move a hierarchy of tasks using aggregation, valid inter-
vals must be computed for each resource variable affected
by the hierarchy.3 These valid intervals are intersected for
the valid placements for the abstract tasks and their children.
The complexity of computing the set of valid intervals for
a resource is where is the number of constraints
(usages) an abstract task has with its children for the vari-
able, and is the number of constraints of other tasks in
the schedule on the variable [8]. If there are similar task
hierarchies in the entire schedule, then , and
the complexity of computing valid intervals is . But
this computation is done for each of resource variables
(often constant for a domain), so moving a task will have a
complexity of .

The summary information of an abstract task represents
all of the constraints of its children, but if the children share
constraints over the same resource, this information is col-
lapsed into a single summary resource usage in the abstract
task. Therefore, when moving an abstract task, the number
of different constraints involved may be far fewer depending
on the domain. If the scheduler is trying to place a summa-
rized abstract task among other summarized tasks, the com-
putation of valid placement intervals can be greatly reduced
because the in is smaller. We now consider two
extreme cases where constraints can be fully collapsed and
where they cannot be collapsed at all.

In the case that all tasks in a hierarchy have constraints
on the same resource, the number of constraints in a hierar-
chy is for a hierarchy of depth and branching factor
(number of child tasks per parent) . In aggregation, where
hierarchies are fully detailed first, this means that the com-
plexity of moving an task is because .
Now consider using aggregation for moving a partially ex-
panded hierarchy where the leaves are summarized abstract
tasks. If all hierarchies in the schedule are decomposed to
level , there are tasks in a hierarchy, each with one
summarized constraint representing those of all of the yet
undetailed subtasks beneath it for each constraint variable.
So , and the complexity of moving the task is

. Thus, moving an abstract task using summary
information can be a factor of times faster than
for aggregation on detailed tasks.

The other extreme is when all of the tasks place con-
straints on different variables. In this case, because
any hierarchy can only have one constraint per variable.
Fully detailed hierarchies contain different vari-
ables, so the complexity of moving a task in this case is

. If moving a summarized abstract task where all
tasks in the schedule are decomposed to level , is the same
because the abstract task summarizes all constraints for each
subtask in the hierarchy beneath it, and each of those con-
straints are on different variables such that no constraints
combine when summarized. Thus, the complexity for mov-
ing a partially expanded hierarchy is the same as for a fully
expanded one. Experiments in Section 5 exhibit great im-
provement for cases when tasks have constraints over com-

3The analysis also applies to state constraints, but we restrict
our discussion to resource usage constraints for simplicity.



mon resource variables.
Along another dimension, scheduling summarized tasks

is exponentially faster because there are fewer temporal con-
straints among higher level tasks. When task hierarchies
are moved using aggregation, all of the local temporal con-
straints are preserved. However, there are not always valid
intervals to move the entire hierarchy. Even so, the sched-
uler may be able to move less constraining lower level tasks
to resolve the conflict. In this case, temporal constraints
may be violated among the moved task’s parent and sib-
lings. The scheduler can then move and/or adjust the du-
rations of the parent and siblings to resolve the conflicts,
but these movements can affect higher level temporal con-
straints or even produce other conflicts. At a depth level
in a hierarchy with decompositions branching with a fac-
tor , the task movement can affect siblings in the worst
case and produce a number of conflicts exponential to the
depth of the task. Thus, if all conflicts can be resolved at
an abstract level , scheduling operations may be
avoided. In Section 5, empirical data shows the exponential
growth of computation with respect to the depth at which
ASPEN finds solutions.

Other complexity analyses have shown that under certain
restrictions different forms of hierarchical problem solving
can reduce the size of the search space by an exponential
factor [10; 9]. Basically, these restrictions are that an algo-
rithm never needs to backtrack from lower levels to higher
levels in the problem. In other words, subproblems intro-
duced in different branches of the hierarchy do not interact.
We do not make this assumption for our problems. How-
ever, the speedup described above does assume that the hi-
erarchies need not be fully expanded to find solutions.

4.3 Decomposition Heuristics for Iterative Repair
Despite this optimistic complexity, reasoning about summa-
rized constraints only translates to better performance if the
movement of summarized tasks resolves conflicts and ad-
vances the search toward a solution. There may be no way to
resolve conflicts among abstract tasks without decomposing
them into more detailed ones. So when should summary in-
formation be used to reason about abstract tasks, and when
and how should they be decomposed? Here, we describe
techniques for reasoning about summary information as ab-
stract tasks are detailed.

We explored two approaches that reason about tasks from
the top-level of abstraction down in the manner described
in [3]. Initially, the planner only reasons about the sum-
mary information of fully abstracted tasks. As the planner
manipulates the schedule, tasks are gradually decomposed
to open up new opportunities for resolving conflicts using
the more detailed child tasks. One strategy (that we will
refer to as level-decomposition) is to interleave repair with
decomposition as separate steps. Step 1) The planner re-
pairs the current schedule until the number of conflicts can-
not be reduced. Step 2) It decomposes all abstract tasks one
level down and returns to Step 1. By only spending enough
time at a particular level of expansion that appears effective,
the planner attempts to find the highest decomposition level
where solutions exist without wasting time at any level.

Another approach is to use decomposition as one of the
repair methods that can be applied to a conflict so that the

planner gradually decomposes conflicting tasks. This strat-
egy tends to decompose the tasks involved in more conflicts
since any task involved in a conflict is potentially expanded
when the conflict is repaired. The idea is that the sched-
uler can break overconstrained tasks into smaller pieces to
offer more flexibility in rooting out the conflicts. This re-
sembles the EMTF (expand-most-threats-first) [3] heuristic
that expands (decomposes) tasks involved in more conflicts
before others. (Thus, we later will refer to this heuristic as
EMTF.) This heuristic avoids unnecessary reasoning about
the details of non-conflicting tasks. This is similar to a most-
constrained variable heuristic often employed in constraint
satisfaction problems. Experiments in Section 5 suggest that
EMTF performs better than level-decomposition, but only
when EMTF uses decomposition rates suited for the prob-
lem domain.

Another heuristic for improving planning performance
prefers decomposition choices that lead to fewer conflicts.
In effect, this is a least-constraining value heuristic used
in constraint satisfaction approaches. Using summary in-
formation, the planner can test each child task by decom-
posing to the child and replacing the parent’s summarized
constraints that summarize the children with the particular
child’s summarized constraints. For each child, the num-
ber of conflicts in the schedule are counted, and the child
creating the fewest conflicts is chosen.4 This is the fewest-
threats-first (FTF) heuristic that is shown to be effective
in pruning the search space in a backtracking planner [3].
Likewise, the experiments in Section 5 report that using FTF
can find solutions much more quickly when decomposition
choices cause significantly varying numbers of conflicts.

5 Empirical Comparisons
The experiments we describe here show that, for our chosen
domain, summary information improves performance sig-
nificantly when tasks within the same hierarchy have con-
straints over the same resource, and solutions are found
at some level of abstraction. At the same time, we find
cases where abstract reasoning incurs significant overhead
when solutions are only found at deeper levels. However,
in domains where decomposition choices are critical, we
show that this overhead is insignificant because the FTF
heuristic finds solutions at deeper levels with better perfor-
mance. These experiments also show that the EMTF heuris-
tic outperforms level-decomposition for certain decomposi-
tion rates. In addition, we show that the time to find a so-
lution increases dramatically with the depth where solutions
are found, supporting the analysis at the end of Section 4.2
claiming that more constraints at deeper levels exponentially
complicate the scheduling problem.

The domain for our problems expands the single rover
problem described in earlier sections to a team of rovers
that must resolve conflicts over shared resources. Paths be-
tween waypoints are assigned random capacities such that
either one, two, or three rovers can traverse a path simulta-
neously; only one rover can be at any waypoint; and rovers
may not traverse paths in opposite directions. In addition,

4Or, in stochastic planners like ASPEN, the children are chosen
with probability decreasing with their respective number of con-
flicts.



0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU Seconds

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU seconds

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU seconds

Figure 4: Plots for the no channel, mixed, and channel only domains

rovers must communicate with the lander for telemetry us-
ing a shared channel of fixed bandwidth. Depending on the
terrain, the required bandwidth varies. 80 problems were
generated for two to five rovers, three to six observation
locations per rover, and 9 to 105 waypoints. In general
problems that contain fewer waypoints and more observa-
tion goals are more difficult because there are more interac-
tions among the rovers. Schedules ranged from 180 to 1300
tasks. Note that we use a prototype interface for summary
information, and some of ASPEN’s optimized scheduling
techniques could not be used.

We compare ASPEN using aggregation with and with-
out summarization for three variations of the domain. The
use of summary information includes the EMTF and FTF
decomposition heuristics. One domain excludes the com-
munications channel resource (no channel); one excludes
the path capacity restrictions (channel only); and the other
includes all mentioned resources (mixed). Since all of the
movement tasks reserve the channel resource, we expect
greater improvement in performance when using summary
information according to the complexity analyses in Section
4.2. Tasks within a rover’s hierarchy rarely place constraints
on other variables more than once, so the no channel domain
corresponds to the case where summarization collapses no
constraints.

Figure 4 (left) exhibits two distributions of problems for
the no channel domain. In most of the cases (points along
the y-axis), ASPEN with summary information finds a solu-
tion quickly at some level of abstraction. However, in many
cases, summary information performs notably worse (points
along the x-axis). We find that for these problems finding a
solution requires the planner to dig deep into the rovers’ hi-
erarchies, and once it decomposes the hierarchies to these
levels, the difference in the additional time to find a solu-
tion between the two approaches is negligible unless the
use of summary information found a solution at a slightly
higher level of abstraction more quickly. Thus, the time
spent reasoning about summary information at higher levels
incurred unnecessary overhead. Previous work shows that
this overhead is rarely significant in backtracking planners
because summary information can prune inconsistent search
spaces at abstract levels [3]. However, in non-backtracking
planners like ASPEN, the only opportunity we found to
prune the search space at abstract levels was using the FTF
heuristic to avoid greater numbers of conflicts in particular
branches. Later, we will explain why FTF is not helpful for
this domain but very effective in a modified domain.

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Average Depth of Hierarchies in Solution

Figure 5: CPU time for solutions found at varying depths.

Figure 4 (middle) shows significant improvement for
summary information in the mixed domain compared to the
no channel domain. Adding the channel resource rarely
affected the use of summary information because the col-
lapse in summary constraints incurred insignificant addi-
tional complexity. However, the channel resource made the
scheduling task noticeably more difficult for ASPEN when
not using summary information. In the channel only domain
(Figure 4 right), summary information finds solutions at the
abstract level almost immediately, but the problems are still
complicated when ASPEN does not use summary informa-
tion. These results support the complexity analysis in Sec-
tion 4.2 that argues that summary information exponentially
improves performance when tasks within the same hierar-
chy make constraints over the same resource and solutions
are found at some level of abstraction.

Figure 5 shows the CPU time required for ASPEN using
summary information for the mixed domain for the depths
at which the solutions are found. The depths are aver-
age depths of leaf tasks in partially expanded hierarchies.
The CPU time increases dramatically for solutions found at
greater depths, supporting our claim that finding a solution
at higher levels is exponentially easier because of an expo-
nential increase in the number of constraints at lower levels.

For the described domain, choosing different paths to an
observation location usually does not make a significant dif-
ference in the number of conflicts encountered because if the
rovers cross paths, all path choices will still lead to conflict.
We created a new set of problems where obstacles force the
rovers to take paths through corridors that have no connec-
tion to others paths. For these problems, path choices always
lead down a different corridor to get to the target location,
so there is usually a path that avoids a conflict and a path



0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + FTF CPU Seconds

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35
EMTF Decomposition Rate

A
A level-decomp
B
B level decomp
C
C level decomp

Figure 6: Performance using FTF and EMTF vs. level-decomposition heuristics.

that causes one. The planner using the FTF heuristic domi-
nates the planner choosing decompositions randomly for all
but two problems (Figure 6 left).

Figure 6 (right) shows the performance of EMTF vs. level
decomposition for different rates of decomposition for three
problems selected from the set. The plotted points are av-
erages over ten runs for each problem. Depending on the
choice of rate of decomposition (the probability that a task
will decompose when a conflict is encountered), perfor-
mance varies significantly. However, the best decomposi-
tion rate can vary from problem to problem making it poten-
tially difficult for the domain expert to choose. Our future
work will include investigating the relation of decomposi-
tion rates to performance based on problem structure.5

6 Conclusion
Reasoning about abstract constraints exponentially accel-
erates finding schedules when constraints collapse during
summarization, and solutions at some level of abstraction
can be found. Similar speedups occur when decomposi-
tion branches result in varied numbers of conflicts. The
offline algorithm for summarizing metric resource usage
makes these performance gains available for a larger set of
expressive planners and schedulers. We have shown how
these performance advantages can improve ASPEN’s effec-
tiveness when scheduling the tasks of multiple spacecraft.
The use of summary information also enables a planner to
preserve decomposition choices that robust execution sys-
tems can use to handle some degree of uncertainty and fail-
ure. Our future work includes evaluating the tradeoffs of
optimizing plan quality using this approach as well as de-
veloping protocols to allow multiple spacecraft planners to
coordinate their tasks asynchronously during execution.

References
[1] S. Chien, G. Rabideu, R. Knight, R. Sherwood, B En-

gelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher,
T. Barrett, G. Stebbins, and D. Tran. Automating
space mission operations using automated planning
and scheduling. In Proc. SpaceOps, 2000.

[2] B. Clement and E. Durfee. Theory for coordinat-
ing concurrent hierarchical planning agents. In Proc.
AAAI, pages 495–502, 1999.

5For other experiments, we used a decomposition rate of 20%.

[3] B. Clement and E. Durfee. Performance of coordi-
nating concurrent hierarchical planning agents using
summary information. In Proc. ATAL, pages 202–216,
2000.

[4] K. Erol, J. Hendler, and D. Nau. Semantics for hier-
archical task-network planning. Technical Report CS-
TR-3239, University of Maryland, 1994.

[5] J. Firby. Adaptive Execution in Complex Dynamic Do-
mains. PhD thesis, Yale Univ., 1989.

[6] M. P. Georgeff and A. Lansky. Procedural knowledge.
Proc. IEEE, 74(10):1383–1398, October 1986.

[7] M. Huber. Jam: a bdi-theoretic mobile agent architec-
ture. In Proc. Intl. Conf. Autonomous Agents, pages
236–243, 1999.

[8] R. Knight, G. Rabideau, and S. Chien. Computing
valid intervals for collections of activities with shared
states and resources. In Proc. AIPS, pages 600–610,
2000.

[9] C. Knoblock. Search reduction in hierarchical problem
solving. In Proc. AAAI, pages 686–691, 1991.

[10] R. Korf. Planning as search: A quantitative approach.
Artificial Intelligence, 33:65–88, 1987.

[11] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny.
Umprs: An implementation of the procedural rea-
soning system for multirobot applications. In Proc.
AIAA/NASA Conf. on Intelligent Robotics in Field,
Factory, Service, and Space, pages 842–849, March
1994.

[12] Papadimitriou and Steiglitz. Combinatorial Optimiza-
tion - Algorithms and Complexity. Dover Publications
New York, 1998.

[13] Q. Yang. Formalizing planning knowledge for hierar-
chical planning. Computational Intelligence, 6(1):12–
24, February 1990.


